
The Kitten LWK
A More Practical Lightweight Kernel

Kevin Pedretti
Scalable System Software Department

Sandia National Laboratories

ktpedre@sandia.gov

Fast OS Phase II Workshop

June 12, 2009

SAND Number: 2009-3410P

mailto:ktpedre@sandia.gov


Paragon
Tens of users

First periods 

processing MPP

World record 

performance

Routine 3D 

simulations

SUNMOS lightweight 

kernel

ASCI Red
Production MPP

Hundreds of users

Red & Black 

partitions

Improved 

interconnect

High-fidelity coupled 

3-D physics

Puma/Cougar 

lightweight kernel

Cplant
Commodity-based 

supercomputer

Hundreds of users

Enhanced simulation 

capacity

Linux-based OS 

licensed for 

commercialization

Red Storm
41 Tflops

Custom interconnect

Purpose built RAS

Highly balanced and 

scalable

Catamount 

lightweight kernel

nCUBE2
Sandiaôs first large 

MPP

Achieved Gflops 

performance on 

applications

1990

1993

1997

1999

2004

Sandia Has a Long History in MPP 

Architectures and System Software



LWK Advantages

Å Improved scalability and performance

ï Derived from taking full advantage of hardware and providing a

more deterministic runtime environment

ï Primary motivator for use on capability systems

Å Simple resource management

ï Deterministic virt->phys memory mapping, no demand paging

ÅSimplifies network stack, no page pinning or page table walks

ÅEnables single-copy intra-node MPI at user-level (SMARTMAP)

ÅEnables transparent use of large pages, reduces TLB pressure

ï Simple task scheduling and affinity

Å Better platform for research

ï Less complex code-base, slower moving target

ïFocus on whatôs important rather than working around problems

LWK is focused on ñdoing the right thingò for HPC on MPPs,

being special-purpose provides freedom to innovate



LWK Disadvantages/Complaints

Å Itôs not Linux

ï Everybody loves Linux! (myself included)

ïIs lightweight Linux still ñLinuxò?

Å Itôs missing feature X (threads, python, é)

ï Can be mitigated by adding feature or through running guest OS

ï Users care about the environment, not implementation details

Å Itôs too much work to maintain

ï All OSes will encounter issues on capability platforms

ï Low batting average getting HPC patches into Linux (.000?)

Å Thereôs no community around it

ï Existing LWKs are closed-source or closed-development

ï Bugs at scale are anything but shallow, not many eyeballs

Our position is LWK advantages will be required on future MPPs,

trying to address or mitigate disadvantages with Kitten



Kitten: A More Practical LWK

Å Open-source from start, open development

ï Project website: http://software.sandia.gov/trac/kitten

ï Kernel is GPLv2, leverages code from Linux

ï User libraries are LGPL

Å Better match for user expectations

ï Provides mostly Linux-compatible user environment, including threading

ï Supports unmodified compiler toolchains and resulting ELF executables

ï Leverages virtualization hardware to load full guest OSes on-the-fly 

(VMM capability provided by Palacios from V3VEE project, http://v3vee.org)

Å Better match vendor expectations

ï Modern code-base with familiar Linux-like organization

ï Drop-in compatible with Linux (e.g., boots like CNL on Cray XT)

ï Infiniband support (currently in private tree)

ï Engaging with vendors and getting feedback

Å End-goal is deployment on future capability system

http://software.sandia.gov/trac/kitten
http://v3vee.org/
http://v3vee.org/
http://v3vee.org/


Kitten Architecture



Improved Out-of-box Experience

make menuconfig ; make isoimage

qemu- system- x86_64 Ƶcdrom arch/x 86_64/boot/image.iso Ƶsmp 4

README includes directions for booting on PC hardware and Cray XT



Included ñHello Worldò Initial User Task

Source code: kitten/user/ hello_world / hello_world.c



Running NPB CG.A as Initial Task

(OpenMP, Fortran)

Environment:
άDChw¢w!bψ¦b.¦CC9w95ψ![[Ґȅ hatψb¦aψ¢Iw9!5{Ґ4έ
NPB print_results() modified to stop early for clarity

OpenMP



Running Puppy.ISO Linux as Guest OS
Kitten console on serial port, Puppy Linux outputs to VGA

puppy.iso is 95 MB image embedded in hello_worldELF executable,
hello_worldstarts up then makes syscallto launch guest OS



Motivations for Virtualization in HPC

ÅProvide full-featured OS functionality in LWK

ïCustom tailor OS to applicationôs needs (ConfigOS, JeOS)

ïAllow users to chose compute node OS on-the-fly

ïPotential to mix native LWK apps and guest OSes on same node

ÅDynamically assign compute node roles

ïCurrently service/compute ratio is fixed

ïSome jobs may benefit if allowed to specify a different balance

ÅRuntime system replacement

ïCapability runtimes often poor match for high-throughput serial

ïRuntime environment for guest OSes need not be the same

Å Improve resiliency

ïBackdoor debug capabilities without special hardware

ïVM-based techniques for job checkpointing and migration



VM Overhead Investigation on Cray XT

ÅTwo configurations:

ïNative: Compute Node Linux (CNL) or Catamount on raw HW

ïGuest: Kitten+Palacios on raw HW, guest CNL or Catamount

ÅFor guest config, two paging schemes tested:

ïShadow: Software-based VMM control of guest page tables

ïNested: Hardware-based control of guest page tables

ÅHardware:

ï48 node Cray XT4, 2.2 GHz AMD quad-cores (Budapest)

ïPlanning larger-scale testing with more applications

ÅGoal was to provide as thin a virtualization layer as 

possible to achieve best case VM performance

ïSeaStar mapped directly into guest, driver para-virtualized

ïGuest allocated physically contiguous memory



Shadow vs. Nested Paging

No Clear Winner

Shadow Paging

O(N) memory accesses

per TLB miss

Page tables the

guest OS thinks it

is using

Palacios managed

page tables used by

the CPU

Page Faults

Nested Paging

O(N^2) memory accesses

per TLB miss

Guest OS managed

guest virt to guest phys

page tables

Palacios managed

guest phys to host phys

page tables

CPU MMU



IMB PingPong Latency:

Nested Paging has Lowest Overhead

Compute Node Linux Catamount

7.0 us

13.1 us

16.7 us

4.8 us

11.6 us

35.0 us

Still investigating cause of poor performance of shadow paging on

Catamount. Likely due to overhead/bug in emulating guest 2 MB pages

for pass-through memory-mapped devices.



IMB PingPong Bandwidth:

All Cases Converge to Same Peak Bandwidth

Compute Node Linux Catamount

For 4KB message:

Native: 285 MB/s

Nested: 123 MB/s

Shadow: 100 MB/s

For 4KB message:

Native: 381 MB/s

Nested: 134 MB/s

Shadow: 58 MB/s



16-byte IMB Allreduce Scaling:

Native and Nested Paging Scale Similarly

Compute Node Linux Catamount


